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Self-consistent distribution of a high brightness beam in a continuous focusing channel
and application to halo-free beam transport

Yuri K. Batygin
The Institute of Physical and Chemical Research (RIKEN), Hirosawa 2-1, Wako-shi, Saitama 351-01, Japan

~Received 2 October 1997!

The self-consistent particle distribution of a high brightness beam in a uniform channel with arbitrary
focusing potential is derived. It is shown that the self-potential of a space-charge dominated beam always tends
to the same distribution as an external focusing potential with opposite sign regardless of the applied focusing
field. Subsequent approximation formulas to the space charge potential of the beam have been derived, which
demonstrates the effect of shielding of the external field. The developed approach is checked via known
solution as a Gaussian beam distribution matched with a nonlinear focusing channel. The performed study
provides a theoretical basis for choosing parameters of the space charge dominated beam transport with
suppressed emittance growth. Numerical results demonstrating prevention of halo formation for a bright,
nonuniform beam, with a phase space density value of 1.5 A/~p cm mrad! are given.
@S1063-651X~98!12205-5#

PACS number~s!: 07.77.2n, 29.27.Eg, 41.75.2i, 52.25.Wz
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I. INTRODUCTION

Emittance conservation of a high brightness particle be
is an important issue for existing and future high intens
accelerator projects. If the beam is matched with the unifo
focusing channel, its distribution function as well as be
emittance and beam brightness are conserved. Fin
matched conditions for the beam requires solutions of
self-consistent problem for the beam distribution function
phase space. Self-consistent particle distribution creates a
tential in which particle motion maintains this distribution

A nonuniform space charge dominated beam is m
matched with a linear focusing channel, which results
beam emittance growth and halo formation. Recently it w
found that nonuniform beam distribution is conserved in
highly nonlinear focusing field@1#. A nonlinear field distri-
bution can be created in a multipole alternating gradi
channel@2#. The effective potential of such a structure is
complicated function of radius and azimuth angle. Find
matching conditions for a beam in such a structure is
quired to provide beam transport without emittance grow
and halo formation. In this paper, the general approach
determine a matched beam distribution in a continuous ch
nel with an arbitrary applied focusing potential is develop
Results of the study are applied to a practical solution of
important problem of intense beam transport without h
formation.

II. SINGLE-PARTICLE HAMILTONIAN

Let us consider a high brightness beam of particles w
chargeq, rest massm, and beam currentI , propagating in a
z-uniform focusing channel with longitudinal velocityb. The
single-particle Hamiltonian in a focusing channel is given

K5cAm2c21~Px2qAx!
21~Py2qAy!21~Pz2qAz!

2

1qUext1qUb , ~2.1!
571063-651X/98/57~5!/6020~10!/$15.00
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wherec is the velocity of light,PW 5(Px ,Py ,Pz) is a canoni-

cal momentum of particles;AW 5(Ax ,Ay ,Az) is a vector po-
tential, Uext5Uext(x,y) is a scalar potential of the focusin
field, andUb5Ub(x,y) is a space charge potential of th
beam. In a moving coordinate system where particles

static, the vector potential of the beam equals zero,AW 50.
According to the Lorentz transformation, componen
of the vector potential are converted into the laboratory s
tem of coordinates as follows:Ax5Ay50, Az5bUb /c
@3#. Transverse components of mechanical momentumpW

5PW 2qAW are equal to that of canonical momentumpx
5Px , py5Py . To make a simplification of the Hamiltonia
~2.1!, let us take into account that kinetic energy of the be
is much larger than the self-potential-energy of the bea
Consider, for simplicity, a uniformly populated beam wi
space charge potential

Ub52
I

4pe0bc S r

RD 2

52
mc2

q

I

I cb
S r

RD 2

52
mc2

q

I

I cb
U

r 5R

, ~2.2!

where R is a beam radius and I c54pe0mc3/q
53.133107(A/Z) A is the characteristic value of beam cu
rent. Substitution of Eq.~2.2! into the expression for the
longitudinal component of the canonical momentum give

Pz5pz1qAz5mcbg1qb
Ub

c
5mcbgS 12

I

I cbg D .

~2.3!

We consider beam transport with the beam current a va
much lower than the Alfve´n currentI !bgI c . Therefore, in
Eq. ~2.3! Pz@qAz , and (Pz2qAz)

2'Pz
222PzqAz . After

expanding small termsA11x'11x/2 in the Hamiltonian
6020 © 1998 The American Physical Society
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57 6021SELF-CONSISTENT DISTRIBUTION OF A HIGH . . .
function and using the new HamiltonianH5K2mc2g, the
general form of the single-particle Hamiltonian in a unifor
focusing channel is

H5
px

21py
2

2mg
1qUext1q

Ub

g2 . ~2.4!

In Ref. @3#, the Hamiltonian~2.4! was used to treat self
consistent beam dynamics in the linear focusing fieldUext
5G r2/2, whereG is a focusing gradient. Below the ap
proach is generalized for the case of an arbitrary app
potential for the focusing fieldUext.

III. PARTICLE DISTRIBUTION FUNCTION

The general approach to find a self-consistent distribu
function for a time-independent process is to represent it
function of Hamiltonianf 5 f (H) @3#. Substitution of the dis-
tribution function into Poisson’s equation provides a nonl
ear equation for unknown space charge potential of the b
Ub , which appears in both the left and right sides of t
equation:

DUb52
q

e0
E

2`

` E
2`

`

f S px
21py

2

2mg
1qUext1q

Ub

g2 Ddpx dpy .

~3.1!

After solving Eq.~3.1! for the charge potential of the bea
Ub , one can find the self-consistent particle distributio
which will be maintained in the focusing channel. A conv
nient way is to use an exponential function:

f 5 f 0expS 2
H

H0
D5 f 0expS 2

px
21py

2

2mgH0
2q

Uext1g22Ub

H0
D .

~3.2!

The distribution function~3.2! contains two unknown
constantsf 0 and H0 , which can be expressed through t
beam parameters. Let us rewrite distribution function~3.2! as
follows:

f 5 f 0expS 22
px

2

p0
222

py
2

p0
22q

Uext1g22Ub

H0
D , ~3.3!

wherep052A^px
2&52A^py

2& is the double rms~root-mean-
square! beam size in phase space. Beam radiusR52A^x2& is
the double value of the rms beam size in configuration sp
The rms value of beam emittancee is a product of beam
radiusR andp0 :

e5
4

mc
A^x2&^px

2&5
Rp0

mc
, ~3.4!

therefore,p05mc e/R. From Eqs.~3.2!, ~3.3!, and~3.4!, the
value ofH0 is given by

H05
p0

2

4mg
5

mc2

4g S e

RD 2

. ~3.5!

The space charge density of the beam is expressed vi
distribution function after integration over particle mome
tum:
d

n
a

-
m

,
-

e.

the

r~x,y!5qE
2`

` E
2`

`

f ~x,y,px ,py!dpx dpy

5r0 expS 2q
Uext1g22Ub

H0
D ,

r052pm f0H0gq. ~3.6!

In Eq. ~3.6! r0 is the value of the space charge particle de
sity in the center of the beam. The value ofr0 is unknown at
this point due to the unknown space charge potential of
beamUb . Let us introduce an average value of space cha
density of the beam:

r̄5
I

bcpR2 . ~3.7!

In general, the particle density at the axisr0 differs from the
average value of space charge densityr̄ as a factor ofk:

r05kr̄, ~3.8!

where parameterk has typical values presented in Table
Taking into account the adopted relationship~3.8!, the value
of f 0 is expressed as follows:

f 05k
2I

p2bqm2c3e2 . ~3.9!

IV. SELF-CONSISTENT SPACE CHARGE POTENTIAL
OF THE BEAM

To find the self-consistent particle distribution, one has
solve Poisson’s equation for an unknown space charge
tential of the beam. Let us introduce dimensionless variab

Vext5
qUext

H0
, Vb5

qUb

H0
, j5

r

a
, ~4.1!

wherea is the radius of the channel. Poisson’s equation
cylindrical polar coordinates is

TABLE I. Ratio of space charge density of the beam at the a
to average value of densityk5r0 / r̄ for different particle distribu-
tions.

Particle
distribution k

r(r )5r0 1

r~r!5r0F12
2

3 S r

RD2G 4

3

r~r!5r0F12
1

2 S r

RD2G2 1.5

r~r!5r0expS22
r 2

R2D 2
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1

j

]Vb

]j
1

]2Vb

]j2 1
1

j2

]2Vb

]w2 52F0exp2~Vext1Vbg22!,

F0516kg
I

bI c
S a

e D 2

. ~4.2!

The unknown potentialVb can be expressed as a Fourie
Bessel series,

Vb5V01V̄b ,

V̄b5 (
n50

`

(
m51

`

Jn~ynmj!~Anmcosnw1Bnmsin nw!,

~4.3!

whereJn(x) is a Bessel function andynm is themth root of
the equationJn(x)50. Expansion~4.3! satisfies the Dirichlet
boundary condition at the conductive surface of a round p
Vb(a)5V0 . ConstantV0 is defined below such that the tot
potential of the structure vanishes at the axis:

Vext~0,w!1
V̄b~0,w!

g2 1
V0

g2 50. ~4.4!

To find an approximate solution of Poisson’s equation,
us take the first term in the near-axis expansion of expon
tial function:

expS 2Vext2
Vb

g2D'12Vext2
Vb

g2 . ~4.5!

The left side of Poisson’s equation is

1

j

]Vb

]j
1

]2Vb

]j2 1
1

j2

]2Vb

]w2 52 (
n50

`

(
m51

`

ynm
2 Jn~ynmj!

3~Anmcosnw1Bnmsin nw!,

~4.6!

therefore, Poisson’s equation with exponential expans
~4.5! becomes

V01 (
n50

`

(
m51

` F11
ynm

2 g2

F0
GJn~ynmj!~Anmcosnw

1Bnmsin nw!5g2~12Vext!. ~4.7!

We introduce dimensionless value of beam brightness

b5
2

bg

I

e2

R2

I c
. ~4.8!

Parameterb is the figure of merit for a space charge dom
nated beam, obeying the Kapchinsky-Vladimirsky~KV ! en-
velope equation in an ideal uniform focusing channel. Sp
charge dominated beam transport is performed ifb@1, oth-
erwise the emittance dominated regime is fulfilled forb
!1. Therefore, in the case of high brightness beam transp
parameterF0 in Poisson’s equation~4.2! is much larger than
unity:
e

t
n-

n

e

rt,

F058kg2bS a

RD 2

@1. ~4.9!

It is possible to simplify with an approximation to Pois
son’s equation~4.7!. For monotonous space charge distrib
tions, the values of coefficientsAnm andBnm in space charge
potential expansion~4.3! vanish quickly with increasing of
indexesn and m. Roots of the Bessel function are slo
functions of numbersn,m: y0152.408; y1153.83, y21
55.13,y0255.52. The ratio of the beam radius to the ap
ture of the channel has a typical value ofR/a'0.5. Conse-
quently, the following factor in Eq.~4.7! can be approxi-
mated as a constant, close to unity:

11
ynm

2 g2

F0
511

ynm
2

8bk S R

a D 2

'11d, d5
1

bk
!1.

~4.10!

The above factor can be taken out of the sum in Eq.~4.7!:

(
n50

`

(
m51

` S 11
ynm

2 g2

F0
D Jn~ynmj!~Anmcosnw1Bnmsin nw!

'~11d!V̄b . ~4.11!

With Eq. ~4.11!, the approximation to Poisson’s equation
given by

V01~11d!V̄b5g2~12Vext!. ~4.12!

The external potential in general can be represented a
expansion on multipole components:

Uext5 (
n52

` S r

aD n

~Ūn cosnw1U% nsin nw!. ~4.13!

Expression~4.13! vanishes on axis, therefore the unknow
constant in the space charge potential expression is give
Eqs.~4.4! and ~4.12! as

V052V̄b~0,w!52
g2

d
. ~4.14!

Finally, the self-consistent space charge dominated beam
tential near axis is

Vb5V̄b1V052
g2

11d
Vext. ~4.15!

The same relationship is valid for the electric fieldEW

52gradU:

EW b52
g2

11d
EW ext. ~4.16!

From Eq. ~4.15! it follows that the space charge dom
nated beam always compensates for the focusing field in
beam core regardless of the applied external focusing po
tial. This fact is well known for channels with linear focusin
field @3#, but now it is shown also for an arbitrary focusin
field. In the above derivations, there were no assumpti
about the specific features of the focusing field. The part
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57 6023SELF-CONSISTENT DISTRIBUTION OF A HIGH . . .
distribution of the bright matched beam always tends to s
a shape that the space charge beam potential is oppos
the external focusing potential. This phenomenon is kno
from plasma physics as Debye shielding for nonneutral p
mas. For high brightness beams, the Debye length is m
smaller than the beam radius@4# and hence, as demonstrate
by Eq.~4.15!, space charge dominated beam always comp
sate for the focusing field. Therefore our analysis gives
the possibility of matching a bright nonuniform partic
beam with the channel through the selection of multip
focusing field components. In Sec. VI, this approach will
used to provide halo-free beam transport of a nonunifo
bright beam.

The second approximation to the self-consistent poten
Vb can be obtained by taking one more term in the expans
of the exponential function:

exp~2Vext2g22Vb!'12Vext2g22Vb1
~Vext1g22Vb!2

2
.

~4.17!

Repeating similar derivations leading to Eq.~4.12!, the sec-
ond approximation to the space charge potential is define

V01~11d!V̄b5g2~12Vext!1
g2

2 S Vext1
V0

g2 1
V̄b

g2D 2

.

~4.18!

Substituting the axial conditionVext(0,w)50, V̄b(0,w)5
2V0 into Eq. ~4.18!, the value of the constantV052g2/d
appears to be the same as in the first approximation.
quadratic equation for unknown space charge potential i

Vb
21Vb2g2~Vext212d!1g4Vext~Vext22!50.

~4.19!

The solution of Eq.~4.19! is a second approximation to th
space charge potential:

Vb5g2~11d2Vext!2g2A~11d2Vext!
22Vext~Vext22!.

~4.20!

For small values ofVext!1, expression~4.20! transforms
to a linear relationship between space charge potential
external focusing potential~4.15!. In the limit of a very high
brightness beamd→0, the second approximation~4.20!
gives the same result,Vb52g2Vext, as the linear approxi-
mation ~4.15!. This means that the linear approximatio
~4.15! becomes more valid with increasing beam brightne

In general, Poisson’s equation ford!1 can be written as
follows:

d

g2 V̄b5expS 2Vext2
V̄b

g22
V̄0

g2D . ~4.21!

The expression under the exponential function vanishes
axis, therefore, the unknown constantV0 in the adopted
model always equals the value of~4.14! due to the resulting
equation

2
d

g2 V051. ~4.22!
h
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Using the value of constantV0 , Poisson’s equation for a
high brightness beam is as follows:

11
d

g2 Vb5expS 2Vext2
Vb

g2D . ~4.23!

Higher order approximations to the space charge poten
Vb can be obtained from Eq.~4.23! by holding more terms in
the expansion of the exponential function or via numeri
solution of Eq.~4.23!. In the extreme case of a very hig
brightness beam, Eq.~4.23! gives the same result as linea
~4.15! and second order~4.20! equations:

15expS 2Vext2
Vb

g2D , Vb52g2Vext. ~4.24!

In this case the space charge potential of the beam c
pletely compensates for focusing field.

In Fig. 1 results of different approximations to the se
consistent space charge potential of the beam for the valu
d50.2 are presented. Both first and second approximat
are close to the exact numerical solution of Eq.~4.23! up to
Vext,3. The second order approximation is valid until th
determinant in Eq.~4.20! is positive:

FIG. 2. Results of the numerical solution of Eq.~4.23! for a
self-consistent potential of a high brightness beam:~a! d50.3; ~b!
d50.2; ~c! d50.1.

FIG. 1. Self-consistent potential of a high brightness beamVb as
a function of applied focusing potentialVext for d50.2, g51: ~a!
linear approximation@Eq. ~4.15!#, ~b! second order approximation
@Eq. ~4.20!#, ~c! numerical solution of Eq.~4.23!.
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6024 57YURI K. BATYGIN
Vext<
~11d!2

2d
. ~4.25!

In Fig. 2 results of numerical solution of Poisson’s equ
tion ~4.23! for different values of beam brightness are p
sented. As seen, with increasing beam brightness, an e
numerical solution of Poisson’s equation becomes close
the linear relationship between space charge potential
external potential.

The space charge distribution of a matched beam ca
derived from Poisson’s equation via a known space cha
potential of the beam

rb52e0DUb5
e0

11d
g2DUext. ~4.26!

The space charge density of high brightness beam is defi
by the external focusing potential functionUext and is a weak

FIG. 3. ~a! Space charge fieldg22Eb @Eq. ~5.4!#, ~b! total field
Etot @Eq. ~5.3!#, and ~c! required focusing fieldEext @Eq. ~5.5!# for
150 keV, 100 mA, 0.1p cm mrad proton beam with a Gaussia
distribution function.
-
-
act
to
nd

be
e

ed

function of the phase space density of the beam. It provi
an easy way to find a self-consistent particle distribution
the channel with a given focusing potential.

V. COMPARISON WITH KNOWN SOLUTIONS

Let us check the developed approach with Gaussian b
matched with nonlinear channel@1#. Consider an inverse
problem and define the required external field to maintai
high brightness beam with a Gaussian particle distributio

f 5 f 0expS 22
x21y2

R2 22
px

21py
2

p0
2 D . ~5.1!

According to the general approach suggested in@1#, the so-
lution of Vlasov’s equation for a Gaussian distribution fun
tion ~5.1! provides an expression for the total field of th
structure:

U~x,y!5
1

g

mc2

q

e2

R4 S x21y2

2 D , ~5.2!

Etot52
]U

]r
52

1

g

mc2

q

e2

R4 r . ~5.3!

The space charge field of the Gaussian beam is attained
Poisson’s equation:

Eb52
]Ub

]r
5

I

2pe0bc

1

r F12expS 22
r 2

R2D G . ~5.4!

The external focusing field required to maintain a beam w
a Gaussian distribution is
the
Eext5Etot2
Eb

g2 52
mc2

qRg
H e2r

R3 12
I

I cbg

R

r
F12expS 22

r 2

R2D G J . ~5.5!

Figure 3 illustrates the relationships between the space charge field of the beam, Eq.~5.4!, the total field, Eq.~5.3!, and the
focusing field of the structure, Eq.~5.5!, for a Gaussian beam with parameterb535. As can be seen, the external field and
space charge field of the beam are close to each other with opposite sign, as described by Eq.~4.16!.

Now let us apply the results of Sec. IV and define a self-consistent particle distribution via a known focusing field~5.5!.
Application of formula~4.26! gives

rb52
e0

~11d!
g2

1

r

]

]r
~rEext!5

2I

bcpR2 expS 22
r 2

R2D F 1

~11d! S 11
I ce

2bg

4IR2 exp@22~r 2/R2!# D G . ~5.6!

The expression in square brackets in Eq.~5.6! is always close to unity near the axisr !R. But for small values ofd
,1022, the expression in square brackets is close to unity far away from the axis untilr<R:

F 1

~11d! S 11
I ce

2bg

4IR2exp@22~r 2/R2!# D G5
11d/exp@22~r 2/R2!#

11d
→

d,0.01
r<R

1. ~5.7!



a

th
tic
r
ig

n.
ac
el

an
m
ne
pr
ea
it

dr
.
t

e

o

,
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The rest of the expression~5.6! describes the beam with
Gaussian distribution

rb5
2I

bcpR2 expS 22
r 2

R2D , ~5.8!

which coincides with initial suggestion~5.1!.
The performed example demonstrates the validity of

developed approach to determine a self-consistent par
distribution. Formula~4.26! gives the correct expression fo
the space charge distribution of a matched beam with a h
value of beam brightness,b.50, within the beam sizer
<R.

Similar results are found for a beam with KV distributio
Figure 4 illustrates the relationships between the sp
charge field of the beam, the total field, and the focusing fi
of the structure for a KV beam with parameterb535. Let us
note that Eqs.~4.15!, ~4.16!, and~4.26! are always valid for
the KV beam.

VI. BEAM TRANSPORT IN A FOCUSING CHANNEL
WITHOUT HALO FORMATION

The above analysis results in a solution to an import
problem: providing conditions for halo-free nonunifor
beam transport in an alternating-gradient focusing chan
Nonlinear space charge forces of a high intensity beam
duce strong emittance growth and halo formation in a lin
focusing channel due to mismatch of the beam profile w
the focusing field~see Fig. 5!. In Ref. @2# it was shown that
incorporation of a duodecapole component in a pure qua
pole channel results in suppression of emittance growth
special case is a four-vane quadrupole structure, where
shape of the electrodes is modified to create a multipole fi
distribution as shown in Fig. 6@5#.

Let us consider a uniform four vanes structure with p
tential

FIG. 4. ~a! Space charge field,~b! total field and~c! required
focusing field for 150 keV, 100 mA, 0.1p cm mrad proton beam
with KV distribution function.
e
le

h

e
d

t

l.
o-
r

h

u-
A
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U~r ,w,t !5S G2

2
r 2cos 2w1

G6

6
r 6 cos 6w D sin v0t,

~6.1!

where G2 is a quadrupole gradient,G6 is a duodecapole

FIG. 5. Emittance growth and halo formation of the 150 keV
100 mA, 0.06p cm mrad proton beam with parabolic distribution
function ~6.15! in a four vanes quadrupole structure with a field
gradient ofG2550 kV/cm2.
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6026 57YURI K. BATYGIN
component, andv052pc/l is an operational frequency
The electrical field of the structure is given by

EW ~r ,w,t !5@2 iW r~G2r cos 2w1G6r 5cos 6w!

1 iWw~G2r sin 2w1G6r 5sin 6w!#sin v0t.

~6.2!

Particle trajectories in the field~6.2! can be represented a
a combination of a slow variation of particle position wi
fast oscillations of small amplitude. If phase advance of
particle oscillation per period of field variation is muc
smaller than 2p, the oscillating field~6.1! can be replaced by
an effective scalar potential of the structure@6#

Uext~rW !5
q

4mg

E0
2~rW !

v0
2 , ~6.3!

which describes the averaged motion of particle. For the c
sidered structure, the effective potential is

Uext~r ,w!5
mc2

q

m0
2

l2 F1

2
r 21zr 6cos 4w1

z2

2
r 10G ,

~6.4!

wherem0 is a smooth transverse oscillation frequency anz
is a ratio of field components:

m05
qG2l2

A8pmc2Ag
, z5

G6

G2
. ~6.5!

The effective potential~6.4! is axially nonsymmetric and a
highly nonlinear function of radius. Equipotential line
Uext(r ,w)5C are circles near the axis and are transformed
a 45° skewed square far from the axis~see Fig. 7!.

Application of Eq.~4.26! gives an expression for the sel
consistent space charge distribution of the beam in the st
ture:

rb5r0~1110zr 4cos 4w125z2r 8!, ~6.6!

r05
2g2

~11d!

mc2

q

e0m0
2

l2 . ~6.7!

FIG. 6. Proposed four vane quadrupole structure with a duo
capole field component@5#.
e

n-

o

c-

Integrating the space charge density over radius and azim
angle 0<r<R, 0<w<2p gives the total number of trans
ported particles per unit length:

N5
I

bc
5

r0

q E
0

RE
0

2p

~1110zr 4cos 4w125z2r 8!r dr dw

5
pr0

q
~R215z2R10!. ~6.8!

From Eq.~6.8!, the space charge particle density at the be
center and parameterk are as follows:

r05
1

~115z2R8!

I

bcpR2 , ~6.9!

k5
1

~115z2R8!
. ~6.10!

Comparison of Eq.~6.9! with Eq. ~6.7! gives the required
value of the focusing gradient to provide beam confineme

G25A8p
mc2

qRl S e2

R2 1
2I

I cbg~115z2R8! D
1/2

. ~6.11!

In Fig. 8 an example of particle distribution~6.6! with the
ratio of field componentsz520.03 is presented. To gene

e-
FIG. 7. Lines of equal values of the functionC5

1
2 r 2

1zr 6cos 4w1(z2/2)r 10 for z520.03: ~a! C50.05, ~b! C50.25,
~c! C50.5, and~d! C50.85.

FIG. 8. Self-consistent particle distributionrb5r0(1
110zr 4cos 4w125z2r 8) of the matched beam in a quadrupo
channel with a duodecapole component with parameterz
520.03: ~a! without truncation,~b! with truncation.
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ate the particle distribution, the area2Rmax,x,Rmax,
2Rmax,y,Rmax, where Rmax51.3 cm, was covered by
grid with small stepsDx50.01Rmax, Dy50.01Rmax. Inside
every elementary mesh of the grid, the fraction of model
particlesDN(x,y)/N0 was defined:

DN~x,y!

N0
5@1110z~x426x2y21y4!

125z2~x21y2!4#
Dx Dy

4Rmax
2 , ~6.12!

where the relationshipr 4cos 4w5x426x2y21y4 was used.
ParameterN0 in Eq. ~6.12! defines the density of modelin
particles through the number of particles at beam ce
DN(0,0):

N05DN~0,0!
4Rmax

2

Dx Dy
. ~6.13!

The defined number of particles in every elementary m
DN(x,y) were uniformly distributed inside the mesh area

Self-consistent particle distribution~6.6! has a fourfold
symmetry @see Fig. 8~a!#. Every 45° variation of azimuth
anglew results in a change of the particle distribution from
decreasing to an increasing function of radius and vice ve
Equipotential lines of the self-potential of a high brightne
beam are close to that of an external focusing poten
which are shown in Fig. 7. To treat the matched beam, i
necessary to bound the beam along equipotential lines
this case, the space charge forces at the beam boundarie
be kept close to that of an unbounded beam, remaining
pendicular to the equipotential lines. Therefore, the be
boundaries have to be 45° skewed square@see Fig. 8~b!#, as
suggested in Ref.@2#.

In Fig. 9, the results of a particle-in-cell simulation
matched beam transport in a quadrupole channel with a d
decapole field component are presented. The beam dist
tion function was a product of the matched beam profile
real space~6.6! and Gaussian distribution function in mo
mentum:

f 5 f 0~1110zr 4cos 4w125z2r 8!expS 22
R2

e2

px
21py

2

m2c2 D .

~6.14!

The beam was truncated along a 45° skewed squar
real space, as shown in Fig. 8~b!. The value of the dimen-
sionless beam brightness was chosen to beb5102. Particle
trajectories were integrated in the field, which was a com
nation of the time-dependent potential~6.1! and the space
charge potential of the beam utilizing the leap-frog meth
The space charge potential of the beam was calculate
every integration step employing a double fast Fourier tra
formation @1#. The value of the field gradientG2
548 kV/cm2 was defined by Eq.~6.11! and the value of the
duodecapole component wasG6521.3 kV/cm6, which cor-
responds to parameterz520.03. As shown in Fig. 9, the
distribution is conserved, which proves that it is match
with the focusing channel.
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The realistic beam distribution is a monotonically d
creasing function of radius, which differs from distributio
~6.6!. A good approximation to the realistic beam is a pa
bolic distribution in phase space@1,2#:

f 5 f 0S 12
x21y2

2R2 2
px

21py
2

2p0
2 D . ~6.15!

The parabolic distribution~6.15! has a projection in configu
ration space close to a truncated Gaussian distribution:

rb5
3I

2pcbR2 S 12
r 2

2R2D 2

. ~6.16!

Required values of quadrupole gradient and duodeca
components to provide matching of such a beam with
channel are found analogously to Ref.@2#:

FIG. 9. Emittance conservation of the 150 keV, 100 m
0.06p cm mrad proton beam with a matched distribution functi
~6.14! in a four vane quadrupole structure with field gradientG2

548 kV/cm2 and duodecapole componentG6521.3 kV/cm6.
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G25
A8pmc2

qlR S e2

R2 1
3I

I cbg D 1/2

, ~6.17!

G652
G2

12bgR4

I

I c
S e2

R2 1
3I

I cbg D 21

.

~6.18!

In Fig. 10, the results of the beam transport simulat
with a parabolic distribution in a quadrupole channel w
field componentsG2552 kV/cm2, G6521.9 kV/cm6 are
presented. To make the beam distribution as close t
matched beam distribution as possible, the beam bound
were truncated along equipotential lines in the same man
as was done for the distribution~6.6!. Space charge field o
the beam

FIG. 10. Emittance conservation of the 150 keV, 100 m
0.06p cm mrad proton beam with a truncated parabolic distribut
function ~6.15! in a four vane quadrupole structure with field gr
dient G2550 kV/cm2 and duodecapole componentG6

521.9 kV/cm6.
n

a
ies
er

Ub52
3

2

mc2

q

I

I cb
S r 2

R22
r 4

4R4 1
r 6

36R6D , ~6.19!

includes term;r 4, which is not present in an effective po
tential ~6.4!. Therefore, the beam with a parabolic distribu

FIG. 11. Adiabatic matching to avoid halo formation of 15
keV, 100 mA, 0.06p cm mrad proton beam in a four vane quadru
pole structure with field gradientG2550 kV/cm2 and adiabatic de-
cline of the duodecapole component fromG6521.9 kV/cm6 to
zero for the distanceL5100 cm.

,
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tion function cannot be exactly matched with the chann
which expresses itself as a small emittance distortion
phase space. Nevertheless, such a beam is much b
matched with the channel than a round beam with the s
distribution function in a pure quadrupole channel~compare
with Fig. 5!.

An extra possibility to employ a nonlinear focusing cha
nel is connected with the adiabatic transformation of chan
parameters@2#. In Fig. 11, the results of the beam dynami
simulation in an adiabatic nonlinear matcher are presen
The value of the quadrupole gradientG2552 kV/cm2 was
kept constant along the channel. The duodecapole com
nent G6 was adiabatically changed from the valu
21.9 kV/cm6, as required by matched conditions, to zero
the distanceL5100 cm. After the nonlinear matching se

FIG. 12. Beam emittance growth in a four vanes structure w
a pure quadrupole field~up! and in a quadrupole field with an adia
batic decline of the duodecapole component~bottom!.
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tion z.L, the channel was a pure quadrupole and the be
was transported 224 cm more to check the results of
transformation. As can be seen, the beam profile in real sp
is modified from a square to a circular shape and follows
adiabatic change of the effective potential. rms beam em
tance growth in a nonlinear transformer is 15%, which
substantially smaller than the 50% emittance growth in
pure quadrupole channel~see Fig. 12!. The final beam emit-
tance and beam profile are matched without serious ph
space portrait distortion and halo formation. After transfo
mation, the beam can be transported in a conventional st
ture with a linear focusing field.

VII. CONCLUSIONS

The self-consistent space charge potential of a h
brightness beam is derived in the case of an arbitrary po
tial for a continuous focusing channel. It is shown that
matched beam always tends to compensate for the app
potential. This is a manifestation of Debye shielding for no
neutral plasmas. A simple formula is given that demonstra
the shielding effect of an arbitrary focusing potential by
self-consistent beam field. A four-vane quadrupole struct
with a multipole component of the 6th order~duodecapole
component! is analyzed to prevent space charge domina
beam emittance growth. In such a structure, the matc
beam profile has to be close to square instead of the con
tional circle beam cross section. Adiabatic change of a n
linear focusing field along the beam structure results
gradual transformation of an initially nonuniform beam d
tribution into a distribution matched with the linear focusin
channel. The given analysis provides matched conditions
nonuniform high brightness beam transport without serio
emittance growth and halo formation.

h

96

an-
@1# Y. Batygin, Phys. Rev. E53, 5358~1996!.
@2# Y. Batygin, Phys. Rev. E54, 5673~1996!.
@3# I. M. Kapchinsky,Theory of Resonance Linear Accelerato

~Atomizdat, Moscow, 1966, Harwood, Chur. 1985!.
@4# I. Hofmann, inProceedings of the CERN Accelerator Scho,

edited by S. Turner~CERN, Geneva, 1987!, p. 327.
@5# Y. Batygin, A. Goto, and Y. Yano, inProceedings of the Fifth
European Particle Accelerator Conference, Barcelona, 19,

edited by S. Myers, A. Pacheco, R. Pascual, Ch. Petit-Je

Genaz, J. Poole~Institute of Physics Publishing, Bristol, 1996!,

p. 1236.
@6# A. V. Gaponov and M. A. Miller, Zh. Eksp. Teor. Fiz.34, 242

~1958!.


